AD-A096 543 ELECTRONICS RESEARCH LAB ADELAIDE (AUSTRALIA) F/6 20/5
A FAST. HIGH VOLTAGE, AVALANCHE TRANSISTOR - SWITCH DRIVER. (U) AUG 80 B A SEE
UNCLASSIFIED ERL-0154-TM

M


ERL.0154-TM

# DEPARTMEN̄T OF DEFENCE 

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION
ELECTRONICS RESEARCH LABORATORY
DEFENCE RESEARCH CENTRE SALISBURY
SOUTH AUSTRALIA

TECHNICAL MEMORANDUM

ERL-0154-TM

A FAST, HIGH VOLTAGE, AVALANCHE TRANSISTOR O SWITCH DRIVER
B.A. SEE


Technical Memoranda are of a tenative nature, representing the views of the author(s), and do not necessarily carry the authority of the Laboratory.

## Approved for Public Release



## ELECTRONICS RESEARCH LABORATORY

## 

10
A FAST, HIGH VOLTAGE, AVALANCHE TRANSISTOR Q SWITCH DRIVER.


This paper describes the development of a fast high voltage switching circuit using avalanche transistors.

The circuit was found eminently suitable for Electro-Optic $Q$ Switching and cavity dumping of lasers.

Many transistor types have been used to drive $Q$ switch elements but in most cases the avalanche chain must be carefully matched to the load.

The circuit described here used the transistor type 2N5 192 which was found to have a wide operating range thus allowing the chain to be easily matched to the $Q$ switch voltage requirements. In addition it has proven very robust and not easily damaged by over voltage. $)$

Approved for Public Release


POSTAL ADDRESS: Chief Superintendent, Electronics Research Laboratory, Box 2151, GPO, Adelaide, South Australia, 5001.

## DOCUMENT CONTROL DATA SHEET

Sicurily classillätion of lhis page $\square$ UNCLASSIFIED

| 1 | DOCUMINT NUMBI:RS |
| :--- | :--- |
| AR  <br> Number AR-002-028 <br> Repon:  <br> Number: ERL-0154-TM <br> Other <br> Numbers:   |  |


| 2 | SECURITY CLASSIFICATION |
| :--- | :--- |
| a.Complete <br> Documem: Unclassified <br> b. <br> Title in <br> Isolation: <br> c. Summary in <br> Isolation:  |  |



| 7 (ORPORATI: AUTHOR(S): |
| :---: |
| Electronics Research Laboratory |
| 7.2 DOCUMENT SERIES |
| ANDNUMBER |
| Electronics Research Laboratory |
| $0154-T M$ |


| a. Task: | RIIFIRRINCI: NUMBI:RS |
| :--- | :--- |
| b. Sponsoring <br> Agency: | DEFENCE |



Securtiy classification of this page: $\square$


This paper describes the development of a fast high voltage switching circuit using avalanche transistors.

The circuit was found eminently suitable for Electro-Optic Q Switching and cavity dumping of lasers.

Many transistor types have been used to drive $Q$ switch elements but in most cases the avalanche chain must be carefully matched to the load.

The circuit described here used the transistor type 2N5192 which was found to have a wide operating range thus allowing the chain to be easily matched to the $Q$ switch voltage requirements. In addition it has proven very robust and not easily damaged by over voltage.

## TABLE OF CONTENTS

Page No.

1. INTRODUCTION ..... 1
2. THE SELECTION OF A TRANSISTOR ..... 1
3. THE AVALANCHE CHAIN ..... 3
3.1 Voltage rise time ..... 3
3.2 Optical switching speed ..... 6
4. ALTERNATIVE CIRCUIT FORMS ..... 7
4.1 Q switch circuit ..... 7
4.2 Cavity dump drive circuit ..... 7
4.3 Pulse gating ..... 7
5. CONCLUSION ..... 8
REFERENCES ..... 9
LIST OF TABLES
6. AN ASSESSMENT OF TRANSISTORS IN THE AVALANCHE MODE ..... 2
7. THE EFFECT OF A CAPACITIVE IOAD ON A SINGLE TRANSISTOR ..... 4
8. THE EFFECT OF A CAPACITIVE LOAD ON A 6 TRANSISTOR CHAIN ..... 5
9. THE EFFECT OF A CAPACITIVE LOAD ON A TIGHTLY PACKED CHAIN ..... 6
LIST OF FIGURES
10. Test circuits for Avalanche transistors
11. 2 N 2222 Avalanche characteristics
12. 2N5192 Avalanche characteristics
13. Avalanche transistor chain
14. Equivalent circuit in ON state
15. Voltage step for 6 transistor chain
16. Circuit for pulse output
17. PTM Q switch drive circuit


## 1. INTRODUCTION

The WRELADS laser system being developed in the Electronics Research Laboratory requires a high repetition rate laser delivering pulses of 5 ns FWHM. As part of a study on lasers to meet this requirement, the Pulse Transmission Mode (PTM) laser was examined. In this mode, the laser cavity is closed with $100 \%$ reflecting mirrors at both ends. The laser is electrooptically $Q$ switched in the normal manner then when the energy density in the cavity reaches its peak, the $Q$ switch is shut very quickly. The energy drains from the cavity via the polarising prism in the time it takes to make one round trip of the cavity. Short pulses can therefore be produced fairly easily. To operate the $Q$ switch in this manner requires two high voltage switching operations in which the first need only be short compared to the pulse evolution time (of the order of 50 ns ) whilst the second needs to be considerably faster, ideally less than the time for one round trip of the cavity ( $2 \mathrm{~d} / \mathrm{c}$, where d is the cavity length).

Hook et al(ref.l,2) investigated this method of operation using gas filled Krytron tubes for the witching. The circuit reported by them(ref.2) was used here but our version was found to be unreliable in operation. The results obtained by Hook et al were for a fairly long $Q$ switched pulse ( 60 ns ). Triggering in the circuit was performed optically with a high voltage vacuum photodiode sensing the leading edge of the $Q$ switch pulse. For a symmetric $Q$ switched pulse, approximately 30 ns are available in which to achieve switching at the peak of the pulse. If the $Q$ switch pulse is short, say 20 ns , then the Krytron triggering delay of 20 ns is unacceptable as triggering would occur too late. In addition the life of the Krytron was not expected to exceed $10^{5}$ firings.

For these reasons the Krytron was not considered suitable as a switch for our application. However Ley et al(ref.3), had used avalanche transistor chains to provide the fast, high voltage ( $\cong 1 \mathrm{kV}$ ), trigger pulse to a Krytron. By using more transistors in the chain, it was decided that one could use the avalanche device in place of the Krytron.

## 2. THE SELECTION OF A TRANSISTOR

A literature survey established that many authors had used transistors in the avalanche mode(ref. 4 to 7) but there seemed to be no clear reasons for a particular choice of transistor type. The course followed was to procure those transistors referred to in the literature together with a wide selection of other transistors which were readily available and test them all in suitable test circuits.

Good background information on avalanche switching is available in the Motorola Switching Transistor Handbook, a Ferranti publication titled "The Use of Transistors in the Avalanche Mode" and various articles (ref. 8 to 11), most of which were published in the early 1960's.

A simple test circuit, figure $1(a)$, was built to test each transistor individually. A 5 V pulse was applied at the input to the base and the voltage across the transistor was increased until it began to fire. This voltage was noted as the lower working limit. The voltage was then increased further until the transistor went into a free running avalanche, erratic and untriggered. This was noted as the upper voltage limit.

In Table 1, a list of transistor types tested is shown, together with approximate lifetimes and upper and lower voltage limits. From an examination of the properties of the transistors listed a selection was made and larger quantities of the more promising types were obtained and subjected
to more extensive testing.

TABLE 1. AN ASSESSMENT OF TRANSISTORS IN THE AVALANCHE MODE

| Type | Upper <br> voltage <br> range | Lower <br> voltage <br> range | Approximate <br> rise time <br> (ns) |
| :--- | :---: | :---: | :---: |
| AX6101 | 142 | 86 | 2.0 |
| AX8001 | 139 | 92 | 1.8 |
| BFY50 | 125 | 100 | 1.5 |
| MPS6520 | 122 | 84 | 1.5 |
| SE4010 | 193 | 124 | 1.7 |
| ZTX300 | 115 | 79 | 1.6 |
| TT3642 | 102 | 93 | 1.4 |
|  |  |  |  |
| 2N697 | 147 | 97 | 1.7 |
| 2N910 | 132 | 97 | 1.8 |
| 2N1482 | 212 | 172 | 2.0 |
| 2N2102 | 208 | 202 | 1.8 |
| 2N2218 | 101 | 99 | 1.5 |
| 2N2222 | 116 | 88 | 1.7 |
| 2N2405 | 176 | 125 | 2.6 |
| 2N2484 | 137 | 124 | 1.7 |
| 2N2714 | 133 | 83 | 1.5 |
| 2N3019 | 175 | 140 |  |
| 2N3055 | 165 | 160 |  |
| 2N3503 | 199 | 159 | 1.5 |
| 2N3565 | 196 | 112 | 2.1 |
| 2N3568 | 160 | 144 | 1.7 |
| 2N3569 | 179 | 124 | 1.6 |
| 2N3641 | 195 | 183 | 1.7 |
| 2N3643 | 128 | 85 | 1.4 |
| 2N3694 | 130 | 92 | 2.5 |
| 2N3707 | 118 | 103 | 1.7 |
| 2N3904 | 105 | 92 | 4.2 |
| 2N3923 | 334 | 242 | 5.0 |
| 2N4300 | 160 | 132 | 2.2 |
| 2N4400 | 103 | 65 | 1.8 |
| 2N4922 | 262 | 163 | 4.0 |
| 2N5192 | 211 | 142 | 2.0 |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

One characteristic not measured by the frcuit of figure l(a) is the voltage drop across the transistor in the un state. To measure this a test circuit as in figure $1(b)$ is helpful. A pulse furmank artwork is used to give a long pulse ( $\cong 200 \mathrm{~ns}$ ) so that fast transient voltakes an subside and allow the ON voltage to be read on an oscilloscope free ol imerterence.

The results of further testing are shown in the histograms of figures 2 and 3 for two transistor types. Figure 218 lor the $2 N 222$ transistor used by some workers. Note that its characteristics show a fairly wide spread. In addition, if the upper voltage limit were exceeded the transistor was of ten irreversibly damaged. Figure 3 shows the results for the transistor finally selected, the 2 N5 192. It has a high operating voltage, a wide operating range and was found to be very robust, ie it is not easily damaged by over voltage. This transistor had previously been used by Mr V.D. Woolley of this group, as a driver for a light emitting diode in the avalanche mode.

Using the , ircoit of figure $1(b)$, the $O N$ voltage for the $2 N 5192$ was found to be $\cong 20 \mathrm{~V}$.

## 3. THE AVALANCHE CHAIN

The avalanche chain is essentially the same as that used by Ley et al(ref.3) and is shown in figure 4. A small capacitor across the bottom (triggered) transistor was used to increase the reliability of triggering. Note that the accessible switched voltage at the emitter of the top transistor is less than the full supply voltage due to the dividing action of the resistor chain. Resistor $R_{L}$ may be smaller than the others in the chain but it
limits the current in the $O N$ state and cannot be reduced too far or the transistors will latch on causing certain failure. For the 2N5192 the latching current was found from the circuit of figure $1(a)$ by reducing the resistance gradually until latching occurred. The test can only be done once on a transistor because it damages the device. Although the power dissipation may be less than the rated power when operated in the normal mode, the avalanche action occurs in small "plasma" columns and the localised heating is excessive. Latching current for the 2 N5192 is approximately 10 mA .

For a $\mathrm{KD} \% \mathrm{P}$ Q switch, having a quarter wave retardation voltage of 3.8 kV at 1064 nm , a chain of 20 transistors is required. From the histogram data of figure 3 , the chain would operate between 3.2 kV and 4.5 kV , thus allowing some adjustment either side of the nominal quarter wave voltage.

### 3.1 Voltage rise time

An equivalent circuit for the chain is shown in figure 5 with a capacitive load (C) and stray inductance ( $\mathrm{L}_{\mathrm{s}}$ ). The chain is assumed to have a source resistance $R_{s}$ in the on state. The effect of stray inductance is to generate a back e.m.f. opposing the voltage change across the capacitive load of

$$
V=L_{s} \frac{d i}{d t}
$$

The circuit will ring at a frequency of

$$
w^{2}=\frac{1}{\mathrm{~L}_{\mathrm{s}} \mathrm{C}}
$$

from which the stray inductance can be obtained as

$$
L_{s}=1 /\{(2 \pi f) L 2 C\}=\left(T_{c}\right)^{2} /\left(4 \pi^{2} C\right)
$$

where $T_{c}$ is the period of the ringing cycle.
A typical result is shown in figure 6, the rise time and ringing cycle are shown for a tightly packed 6 transistor chain with a 1000 pF load.

The voltage rise time is

$$
\left(10 \% \cdot{ }^{\tau^{v}} 90 \%\right)=26 \mathrm{~ns}
$$

and the period of the ringing cycle is

$$
\mathrm{T}_{\mathrm{c}}=56 \mathrm{~ns}
$$

giving

$$
\mathrm{L}_{\mathrm{s}}=0.079 \mu \mathrm{H}
$$

It was further noted that the rise time was directly related to the ringing cycle period. The mean over 23 readings gives

$$
\mathrm{r}_{\mathrm{v}}=0.45 \mathrm{~T}_{\mathrm{c}}
$$

Table 2 gives the measured results for a single transistor, with no attempt to minimise stray inductance. The last figure in the table is for a 1000 pF capacitor connected with short leads directly across the transistor. This should be compared to the first figure giving the result for a 1000 pF capacitor with its leads intact. A significant reduction in stray inductance could be made with short leads.

TABLE 2. THE EFFECT OF A CAPACITIVE LOAD ON A SINGLE TRANSISTOR

| Capacitor <br> C | Rise time <br> $\tau_{\mathbf{v}}$ | Ringing cycle <br> period <br> $\mathrm{T}_{\mathrm{c}}$ | $\tau_{\mathbf{v}}$ <br> $\mathrm{T}_{\mathbf{c}}$ | Stray <br> inductance <br> $\mathrm{L}_{\mathbf{s}}$ |
| :---: | :---: | :---: | :---: | :---: |
| $(\mathrm{pf})$ | $(\mathrm{ns})$ | $(\mathrm{ns})$ |  | $(\mu \mathrm{H})$ |
| 1000 | 36 | 80 | 0.45 | 0.162 |
| 470 | 28 | 52 | 0.54 | 0.146 |
| 330 | 20 | 44 | 0.45 | 0.149 |
| 220 | 16 | 38 | 0.42 | 0.164 |
| 150 | 14 | 29 | 0.48 | 0.142 |
| 82 | 12 | 26 | 0.46 | 0.209 |
| 47 | 9 | 19 | 0.47 | 0.195 |
| 1000 | 9 | 18 | 0.5 | 0.0082 |

* Short leads

Table 3 gives the results for a 6 transistor chain, again with no attempt to minimise stray inductance. The rise times are longer and stray inductance higher than for the single transistor. The last figure in Table 3 was obtained when the current rise was limited by a resistive load of $1 \mathrm{~K} \Omega$ in series with the capacitance as shown in figure 7. The effect of the load resistor is to limit the rate of rise of the current and hence the back e.m.f. The voltage appearing across the load resistor is a fast pulse. For the pulse to be nearly equal in amplitude to the switched voltage, the load resistor should be large compared to the source
resistance. Best results were obtained when the time constant produced by the caparitor and resistor was

$$
\tau=R C=200 \mu \mathrm{~s}
$$

TABLE 3. THE EFFECT OF A CAPACITIVE LOAD ON A 6 TRANSISTOR CHAIN

| Capacitor <br> $c$ | Rise time <br> $\tau_{v}$ | Ringing cycle <br> period <br> $T_{c}$ | $\tau_{v}$ <br> $-\underline{1}$ <br> $T_{c}$ | Stray <br> inductance <br> $L_{s}$ |
| :---: | :---: | :---: | :---: | :---: |
| $(\mathrm{pf})$ | $(\mathrm{ns})$ | $(\mathrm{ns})$ |  | $(\mu \mathrm{H})$ |
| 1000 | 48 | 106 | 0.45 | 0.28 |
| 470 | 30 | 76 | 0.39 | 0.31 |
| 330 | 26 | 60 | 0.43 | 0.28 |
| 220 | 22 | 50 | 0.44 | 0.29 |
| 150 | 16 | 38 | 0.42 | 0.24 |
| 82 | 14 | 31 | 0.45 | 0.30 |
| 47 | 10 | 25 | 0.40 | 0.34 |
| 1000 | 8 | None |  |  |

$\%$ with $1 \mathrm{~K} \Omega$ limiting current
Table 4 gives the results for a 6 transistor chain which was tightly packed in an attempt to minimise stray inductance. Comparison with Table 3 shows that the stray inductance was reduced by a factor of 4 . The last figure of Table 4 indicates a stray capacitance of 17.8 pF using the mean inductance to calculate the capacitance. This is considerably higher than the nominal capacitance of the high voltage probe ( 3 pF ) used for the measurements. Hence the probe did not unduly influence the results.

TABLE: 4. THE RFFECT OF A CAPACITIVE LOAD ON A TIGHTLY PACKED CHAIN

| Capacitor <br> c | Rise time <br> $\tau_{v}$ | Ringing cycle <br> period <br> $\mathrm{T}_{\mathrm{c}}$ | $\tau_{\mathrm{v}}$ <br> $\mathbf{-}$ <br> $\mathrm{T}_{\mathrm{c}}$ | Stray <br> inductance <br> $\mathrm{L}_{\mathbf{s}}$ |
| :---: | :---: | :---: | :---: | :---: |
| $(\mathrm{pf})$ | $(\mathrm{ns})$ | $(\mathrm{ns})$ |  | $(\mu \mathrm{H})$ |
| 1000 | 26 | 56 | 0.46 | 0.079 |
| 470 | 17 | 38 | 0.45 | 0.078 |
| 330 | 14 | 30 | 0.47 | 0.069 |
| 220 | 12 | 25 | 0.48 | 0.072 |
| 150 | 9 | 18 | 0.5 | 0.055 |
| 82 | 8 | 15 | 0.53 | 0.070 |
| 47 | 6 | 11 | 0.55 | 0.065 |
| 0 | 8 | 7 |  |  |

* Probe and stray capacitance only

For $Q$ switching, no special care is needed to eliminate stray inductance as voltage rise times of 8 ns are easily obtained with a resistive load to limit the current. This is much less than pulse evolution times (50 to 100 ns ) as required.

For pulse gating or cavity dumping, where a fast high voltage pulse is required, some effort to minimise stray inductance is needed but even here the effects of capacitive loading are minimised by the resistive load across which the fast pulse is developed.

### 3.2 Optical switching speed

Although the voltage rise times given in Tables 2 to 4 are not better than 8 ns , the optical switching is faster. The transmission of the $Q$ switch as a function of time is

$$
T(t)=\sin ^{2}\left\{(\pi \cdot t) /\left(2 \cdot \tau_{v}\right)\right\}
$$

where $T(t)$ is the transmission as a function of time and $\tau_{v}$ is the voltage rise time.

For the transmission to change from $10 \%$ to $90 \%$

$$
\tau_{\mathrm{T}}=0.58 \tau_{\mathrm{V}}
$$

where $T_{T}$ is the transmission rise time.
With $T_{V}=8 \mathrm{~ns}$, the transmission rise time is

$$
\tau_{\mathrm{L}}=4.6 \mathrm{~ns}
$$

Thus the circuit is capable of producing 5 ns FWHM pulses from a laser operated in the pulse transmission mode. This was subsequently confirmed experimentally.

## 4. ALTERNATIVE CIRCUIT FORMS

The basic avalanche chain may be used in a number of ways depending on the requirements. It can be used for normal $Q$ switching, for operating a PTM laser or as a pulse selector (or gate).

### 4.1 Q switch circuit

When used for $Q$ switching, a single chain as shown in figure 7 is used. If the $Q$ switch is connected to point 1 , a DC bias is provided which is shorted to ground when the chain is fired. If connected to point 2 , the $Q$ switch has no bias and a fast pulse is obtained when the chain is fired. This would be used where it is desired to pulse open the Q switch, bias being provided optically.

### 4.2 Cavity dump drive circuit

Considerable difficulty was experienced in devising a circuit combining two avalanche chains to operate independently within 100 ns of each other. With fast high voltage transients one might expect that firing one chain would induce the second to fire. I am indebted to Mr C. Flecker of this establishment (since retired) for the basic form of the successful circuit. This is shown in figure 8 in which the two transistor chains are again shown schematically as blocks. Chain A provides DC bias to the $Q$ switch and when fired the bias is removed opening the $Q$ switch. Chain $B$ is capacitively coupled to the $Q$ switch. When the capacitor is charged this side of the $Q$ switch is held at ground potential by the resistive load. When chain B is fired a fast pulse is developed across the resistor, thus closing the $Q$ switch rapidly. Note the resistive load removes the effect of the capacitive coupling as described in the preceding section.

The coupling capacitor used for chain $B$ should be large compared to the $Q$ switch capacitance as these form a capacitive voltage divider. The voltage appearing across the $Q$ switch is

$$
\mathrm{V}_{\mathrm{q}}=\frac{\mathrm{c}_{\mathrm{q}}}{\mathrm{c}+\mathrm{C}_{\mathrm{q}}}
$$

where $C_{q}$ is the $Q$ switch capacitance and $C$ is the coupling capacitor.
A high voltage diode as shown between chain $B$ and the $Q$ switch can help prevent fast transients from chain A interacting with chain B but is not essential.

This work was previously reported at the 1 st Australian National Laser Conference, March 1978. Since then Davis et al(ref. 13) have reported on a very similar circuit which was developed for pulse gating.

### 4.3 Pulse gating

If the $Q$ switch connection to chain $A$ is made between the resistor and capacitor, as for chain $B$, then no bias appears on the $Q$ switch.

Firing of the two chains with a short delay between them now yields a square pulse which may be used to gate or select one pulse from a pulse train. This is the form of the circuit used by Davis et al.
5. CONCLUSION

A very reliable avalanche transistor $Q$ switch driver has been designed, based on the $2 N 5192$ transistor. The double chain version has been successfully used to generate 5 ns FWHM pulses from a pulse transmission mode laser.

A single chain version has been used as a $Q$ switch drive for a laser running at 168 Hz for well in excess of 100 hours. No life limitation is foreseen.

Author
Hook, W.R.,
Dishington, R.H. and
Hilberg, R.P.

Hook, W.R., Hilberg, R.P. and Dishington, R.H.

Ley, J.M., Christmas, T.M. and Wildey, C.G.

Thomas, S.W. and Coleman, L.W.

Corcoran, V.J., McMillan, R.W. and Rushworth, P.M.

Brasseur, G., Van Eck, J.L. and Vilain, P .

Harney, R.C.

Henebry, W.M.

Bell, B.H.

Bramson, M.

## Title

"Laser Cavity Dumping using Time Variable Reflection".
Applied Physics Letters, V 9, No.3, pp 125 - 127, 1 August 1966
"A TVR Laser Oscillator using a single pockels cell for $Q$ switching and Synchronised Cavity Dumping". Proceedings of the IEEE, pp 1954 - 1955, December 1966
"Solid State Subnanosecond Light Switch".
Proceedings of the Institute of Electrical Engineers, V 117, No.6, pp 1057-1062, June 1970
"Laser Triggered Avalanche Transistor Voltage Generator for a picosecond Streak Camera". Applied Physics Letters, V 20 , No. 2, pp 83-84, 15 January 1972
"Selection of ON Mode-locked Laser Pulses".
Applied Optics, V 14, No.3, pp 643-646, March 1975
"Selection of a single pulse from a mode-locked laser using avalanche transistors". Applied Optics, $V$ 14, No. 8 , pp 1758 - 1759, August 1975
"Pockels Cell Pulse Stackers". Lawrence Livermore Laboratory, Ucrl 51908, 7 January 1976
"Avalanche Transistor Circuits." Review of Scientific Instruments. V 32, No.11, pp 1198-1203, November 1961
"Avalanche circuits are more Versatile than you Think". Electronic Design, pp 56-61, 8 June 1964
"Application of Avalanche Transistors to 10 Megacycle Pulse Generators".
IRE Transactions on Nuclear Science, pp 35 - 37, August 1962

No.

Author
Miller, S.L. and Ebers, J.J.

See, B.A.

Davis, S.J., Murray, J.E. Downs, D.C. and Lowdermilk, W.H.

## Title

"Alloyed Junction Avalanche Transistors".
Bell System Technical Journal, $V$ 34, No.5, pp 883-902, September 1955
"A Pulse Transmission Mode Laser". 1st Australian National Laser Conference, March 1978
"High Performance Avalanche Transistor Switchout for external Pulse selection at 1.06 nm ." Applied Optics, V 17, No.19, pp 3184 - 3186, October 1978

(a) Basic test circuit

(b) Pulse test circuit

Figure 1. Test circuits for Avalanche transistors



$\left(v_{\text {MAX. }}-v_{\text {MIN. }}\right)$

Figure 2. 2N2222 Avalanche characteristics


Figure 3. 2N5192 Avalanche characteristics

ERL-0154-TM
Figure 4


Figure 4. Avalanche transistor chain


Figure 5. Equivalent circuit in ON state

ripire 6. Voltage step for 6 transistor chain


Figure 7. Circuit for pulse output


Figure 8. PTM Q switch drive circuit

## DISTRIBUTION

## Copy No.

## EXTERNAL

In United Kingdom
Institution of Electrical Engineers
Hitchin Herts England
British Library Lending Division
Boston Spa, Yorkshire, England
Technology Reports Centre
Orpington Kent England
In United States of America
National Technical Information Service
Springfield, Va. USA
NASA Scientific \& Technical Information Office
Washington DC USA
$\begin{array}{ll}\text { Engineering Societies Library } \\ \text { New York NY USA } & 6\end{array}$
Cambridge Scientific Abstracts
Riverdale Md USA
In Australia
Chief Defence Scientist 8
Deputy Chief Defence Scientist 9
Controller, Projects and Analytical Studies 10
Superintendent, Major Projects 11
Superintendent, Science and Technology Programmes 12
Defence Information Services Branch (for microfilming) 13
Defence Information Services Branch for:-
United Kingdom, Ministry of Defence, Defence Research Information Centre (DRIC) 14

United States, Department of Defense,
Defense Documentation Center
Canada, Department of National Defence, Defence Science Information Service

New Zealand, Ministry of Defence 28
Australian National Library 29
Defence Library, Campbell Park 30
Library, Aeronautical Research Laboratory ..... 31
Library, Materials Research Laboratory ..... 32
Director, Joint Intelligence Organisation (DDSTI) ..... 33
WITHIN DRCS
Chief Superintendent, Electronics Research Laboratory ..... 34
Superintendent, Navigation and Surveillance Division ..... 35
Principal Officer, Laser Group ..... 36
Principal Officer, Optical Techniques Group ..... 37
Principal Officer, Terminal Guidance Group ..... 38
Principal Officer, Control and Instrumentation Systems Group ..... 39
Principal Officer, Mechanisms and Instrumentation Group ..... 40
Mr M.F. Penny, Laser Group ..... 41
Mr C. Lowe, Terminal Guidance Group ..... 42
Dr J. Richards, Laser Group ..... 43
Dr R. Seymour, Laser Group ..... 44
Dr D. Phillips, Laser Group ..... 45
Mr D. Rees, Laser Group ..... 46
Mr K. Fueloep, Laser Group ..... 47
Mr P. Wilsen, Laser Group ..... 48
Mr C. Lightowler, Control and Instrumentation Systems Group ..... 49
Mr C. McIntosh, Control and Instrumentation Systems Group ..... 50
Mr D. Taylor, Terminal Guidance Group ..... 51
Mr N. Irwin, Terminal Guidance Group ..... 52
Author ..... 53-58
DRCS Library ..... 59-61
Spares ..... 62 ..... 65


